771 research outputs found

    Metamorphic Testing of Navigation Software: A Pilot Study with Google Maps

    Get PDF
    Millions of people use navigation software every day to commute and travel. In addition, many systems rely upon the correctness of navigation software to function, ranging from directions applications to self-driving machinery. Navigation software is difficult to test because it is hard or very expensive to evaluate its output. This difficulty is generally known as the oracle problem, a fundamental challenge in software testing. In this study, we propose a metamorphic testing strategy to alleviate the oracle problem in testing navigation software, and conduct a case study by testing the Google Maps mobile app, its web service API, and its graphical user interface. The results show that our strategy is effective with the detection of several real-life bugs in Google Maps. This study is the first work on automated testing of navigation software with the detection of real-life bugs

    Conductivity Imaging from Internal Measurements with Mixed Least-Squares Deep Neural Networks

    Full text link
    In this work we develop a novel approach using deep neural networks to reconstruct the conductivity distribution in elliptic problems from one internal measurement. The approach is based on a mixed reformulation of the governing equation and utilizes the standard least-squares objective to approximate the conductivity and flux simultaneously, with deep neural networks as ansatz functions. We provide a thorough analysis of the neural network approximations for both continuous and empirical losses, including rigorous error estimates that are explicit in terms of the noise level, various penalty parameters and neural network architectural parameters (depth, width and parameter bound). We also provide extensive numerical experiments in two- and multi-dimensions to illustrate distinct features of the approach, e.g., excellent stability with respect to data noise and capability of solving high-dimensional problems.Comment: 28 pages. 12 figure

    Experimental Investigation of Longitudinal Space-Time Correlations of the Velocity Field in Turbulent Rayleigh-B\'{e}nard Convection

    Full text link
    We report an experimental investigation of the longitudinal space-time cross-correlation function of the velocity field, C(r,τ)C(r,\tau), in a cylindrical turbulent Rayleigh-B\'{e}nard convection cell using the particle image velocimetry (PIV) technique. We show that while the Taylor's frozen-flow hypothesis does not hold in turbulent thermal convection, the recent elliptic model advanced for turbulent shear flows [He & Zhang, \emph{Phys. Rev. E} \textbf{73}, 055303(R) (2006)] is valid for the present velocity field for all over the cell, i.e., the isocorrelation contours of the measured C(r,τ)C(r,\tau) have a shape of elliptical curves and hence C(r,τ)C(r,\tau) can be related to C(rE,0)C(r_E,0) via rE2=(rβτ)2+γ2τ2r_E^2=(r-\beta\tau)^2+\gamma^2\tau^2 with β\beta and γ\gamma being two characteristic velocities. We further show that the fitted β\beta is proportional to the mean velocity of the flow, but the values of γ\gamma are larger than the theoretical predictions. Specifically, we focus on two representative regions in the cell: the region near the cell sidewall and the cell's central region. It is found that β\beta and γ\gamma are approximately the same near the sidewall, while β0\beta\simeq0 at cell center.Comment: 16 pages, 15 figures, submitted to J. Fluid Mec

    An extended abstract of "Metamorphic testing: testing the untestable"

    Get PDF
    This document is an extended abstract of an IEEE Software paper, "Metamorphic Testing: Testing the Untestable," presented as a J1C2 (Journal publication first, Conference presentation following) at the IEEE Computer Society signature conference on Computers, Software and Applications (COMPSAC 2019), hosted by Marquette University, Milwaukee, Wisconsin, USA. © 2019 IEEE

    Metamorphic relations for enhancing system understanding and use

    Get PDF
    Modern information technology paradigms, such as online services and off-the-shelf products, often involve a wide variety of users with different or even conflicting objectives. Every software output may satisfy some users, but may also fail to satisfy others. Furthermore, users often do not know the internal working mechanisms of the systems. This situation is quite different from bespoke software, where developers and users usually know each other. This paper proposes an approach to help users to better understand the software that they use, and thereby more easily achieve their objectives—even when they do not fully understand how the system is implemented. Our approach borrows the concept of metamorphic relations from the field of metamorphic testing (MT), using it in an innovative way that extends beyond MT. We also propose a "symmetry" metamorphic relation pattern and a "change direction" metamorphic relation input pattern that can be used to derive multiple concrete metamorphic relations. Empirical studies reveal previously unknown failures in some of the most popular applications in the world, and show how our approach can help users to better understand and better use the systems. The empirical results provide strong evidence of the simplicity, applicability, and effectiveness of our methodology

    Metamorphic testing: testing the untestable

    Get PDF
    What if we could know that a program is buggy, even if we could not tell whether or not its observed output is correct? This is one of the key strengths of metamorphic testing, a technique where failures are not revealed by checking an individual concrete output, but by checking the relations among the inputs and outputs of multiple executions of the program under test. Two decades after its introduction, metamorphic testing has become a fully-fledged testing technique with successful applications in multiple domains, including online search engines, autonomous machinery, compilers, Web APIs, and deep learning programs, among others. This article serves as a hands-on entry point for newcomers to metamorphic testing, describing examples, possible applications, and current limitations, providing readers with the basics for the application of the technique in their own projects. IEE

    Research on the construction path of new agricultural science in Xinjiang based on the high-quality development of higher education

    Get PDF
    In the context of high-quality development of education, vigorously promoting the construction of new agricultural science is the need to serve the national strategy and rural revitalization, and is an inevitable choice for the development of agriculture-related colleges and universities. Exploring a new path of agricultural science construction that is in line with both national policies and local socio-economic development, and cultivating high-quality agricultural talents is a realistic problem that needs to be solved at present. This paper adopts inductive method through interviews with experts from agriculture-related colleges and universities, research institutes, industry enterprises and government authorities, and expert discussion sessions, and proposes that the construction of new agricultural science in Xinjiang needs to adopt such paths as innovative talent cultivation system, innovative talent practice platform, innovative curriculum system, innovative teacher team construction, innovative research platform for rural revitalization, and support for the construction of Xinjiang New Agricultural Science Education Union to achieve high-quality talent cultivation and enhance the ability to serve rural revitalization. This study tries to propose a new construction path for the construction of Xinjiang agricultural science, explore a new track for agriculture-related colleges and universities to serve the needs of rural strategy and shape a new development momentum

    Adaptive Random Testing in Detecting Layout Faults of Web Applications

    Get PDF
    As part of a software testing process, output verification poses a challenge when the output is not numeric or textual, such as graphical. The industry practice of using human oracles (testers) to observe and verify the correctness of the actual results is both expensive and error-prone. In particular, this practice is usually unsustainable when developing web applications - the most popular software of our era. This is because web applications change frequently due to the fast-evolving requirements amid popular demand. To improve the cost effectiveness of browser output verification, in this study we design failure-based testing techniques and evaluate the effectiveness and efficiency thereof in the context of web testing. With a novel application of the concept of adaptive random sequence (ARS), our approach leverages peculiar characteristics of failure patterns found in browser layout rendering. An empirical study shows that the use of failure patterns and inclination to guide the testing flow leads to more cost-effective results than other classic methods. This study extends the application of ARSs from the input space of programs to their output space, and also shows that adaptive random testing (ART) can outperform random testing (RT) in both failure detection effectiveness (in terms of F-measure) and failure detection efficiency (in terms of execution time)

    Bis(μ-4-fluoro-2,6-diformyl­phenolato)bis­[diaqua­nickel(II)] dichloride

    Get PDF
    In the title dinuclear nickel(II) complex, [Ni2(C8H4FO3)2(H2O)4]Cl2, synthesized by the reaction between 4-fluoro-2,6-diformyl­phenol and nickel(II) chloride in methanol, the coordination cation is located on an inversion center and the NiII atom adopts a slightly distorted octa­hedral coordination geometry. The two Ni atoms are bridged by two phenolate O atoms and the intra­molecular Ni⋯Ni distance is 3.0751 (9) Å. The crystal structure is stabilized by O—H⋯Cl hydrogen bonds
    corecore